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Abstract—Stress fields in laminated plates containing an abrupt thickness taper are determined
following Pagano’s methodology of using the Hellinger-Retssner functional with the stress com-
ponents approximated within layers by expressions explicit in the thickness coordinate [Pagano, N.
J. (1978). Stress fields in composite laminates. [nt. J. Solids Structures 14, 385-400; Pagano, N. J.
(1983). Axisymmetric stress fields in involute bodies of revolution. In Advances in Aerospace
Structures, Materials and Dynamics; A Symposium on Composites, AD-06, (eds U. Yuceoglu, R. L.
Sierakowski and D. A. Glasgow) ASME, NY, pp. 57-64]. The Euler equations from the variational
principle are a set of variable coefficient, differential-algebraic equations (DAEs) in the longitudinal
coordinate. Difficulties with the number of differential equations and boundary conditions are
resolved. Solution of the system is by higher-order one-step finite difference scheme. Numerical ill-
conditioning encountered when modeling layers that are thin relative to other layers in a model was
remedied by choosing stress shape functions and displacement weighting functions that are different
than those used by Pagano. The example problems discussed are dropped-ply laminates (laminates
with terminated internal plies), that are subjected to in-plane compression or shear under the
assumption that the response is adequately modeled by generalized plane deformation elasticity.
Copyright © 1996 Elsevier Science Ltd.

INTRODUCTION

Tapering the thickness of a laminate by terminating, or dropping, internal plies is an
important method of stiffness tailoring in structures made from advanced composite
materials. Plies are dropped, for example, from root to tip in aircraft wing skins, in
composite flexbeams of helicopter rotor hubs, and near field joints in solid rocket boosters.
A schematic of a single step asymmetric ply drop-off is shown in Fig. 1. This type of ply
drop-off is typically used in applications where a flat surface is important, such as the
aforementioned wing skin.

For uniaxial loading normal to the ply termination, experiments and analyses have
established that the onset of delamination between the dropped plies and adjacent con-
tinuous plies in the vicinity of the ply termination is usually the first major failure event.
For example, see the papers by Curry et al. (1992), Fish and Lee (1989), and Wisnom
(1991, 1992). Consequently, the analyses for the response and failure of dropped-ply
laminates have focused on the determination of interlaminar stresses at the ply termination
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Fig. . Tapered laminate with a single step drop.
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combined with a failure criterion. Criteria for the onset of delamination are either based
on interlaminar stresses (Fish and Lee, 1989) or fracture mechanics (Salpekar et al. 1988 ;
Wisnom, 1991 and 1992). Most analysts, including those in the references cited here,
use the displacement-based finite element method. The best locations for accurate stress
computations using this finite element method are at the Gauss points in the interior of the
element (Barlow, 1976), and not at the interfaces between adjacent elements. Indeed,
interlaminar traction continuity is not guaranteed with the displacement-based finite
element method. Since we seek a method of analysis that accurately predicts interlaminar
stresses, conditions of traction and displacement continuity between lamina should be
satisfied.

Employing the Hellinger-Reissner variational principle, Pagano (1978, 1983)
developed a laminate structural theory that satisfied both displacement and traction con-
tinuity point-wise at the interface between lamina. For a class of free edge boundary value
problems in which dependent variables are functions of one coordinate, this theory led to
13N differential-algebraic equations (DAEs) governing the response, where N denotes the
number of mathematical layers. Convergence of the theory to the elasticity solution is
expected for increasing values of N. Pagano (1978) solved these equations in closed form,
but numerical results for N > 6 could not be obtained because of computer limitations.
Pagano and Whitford (1985) and Pagano (1986) used the theory extended to shells of
revolution (Pagano, 1983) to obtained finite difference solutions for the axisymmetric
response of a conical frustum under constant temperature change.

Sandhu er al. (1991) developed a finite element model of Pagano’s (1978) original
theory. This theory applies to flat, uniform thickness laminates and results in a system of
partial differential equations in the plane of the laminate. The procedure Sandhu et al.
followed was to develop a self-adjoint version of Pagano’s governing equations, which were
not self-adjoint as published, from which they derived a new variational formulation and
ultimately a two-dimensional finite element model. However, this solution method for the
uniform thickness laminates is very involved, and it would increase in complexity if applied
to the dropped-ply laminate configuration.

The objective of this paper is to develop a numerical solution for the dropped-ply
laminate configuration using Pagano’s (1978 and 1983) laminate structural theory.
Although this theory (Pagano, 1983) was formulated for curved layers with variable thick-
ness, the solutions presented by Pagano and Whitford (1985) and Pagano (1986) were for
layers with straight meridians and uniform thickness. In the development of the numerical
solution detailed in this paper, we had to make modifications to shape functions of the
original theory to avoid numerical ill conditioning, and to determine a procedure to resolve
the number of boundary conditions with the order of the governing DAE system of
equations. Numerical results are presented for parametric studies on the effects of load
path eccentricity and stiffness change across the taper on delamination initiation.

VARIATIONAL PRINCIPLE

The Hellinger-Reissner variational principle is used to derive compatibility equations
consistent with assumed stresses. Consider a body that occupies a volume V, which is
subdivided into N subvolumes V,, with M internal interfaces I, and with external surface
S. The portion of the surface with tractions prescribed i1s denoted by S, while S, represents
the portion with displacements prescribed. Using a cartesian reference with coordinates x,,
i =1, 2, 3, denote the displacements by u; strains by ¢, stresses by o, surface tractions by
7, and the complementary strain energy density by W*. The tilde symbol () indicates a
prescribed value and repeated indices are summed from one to three in the usual indicial
notation. Neglecting body forces, the principle states

N L+ y OW* ) A (k) )
Z J [(% — )Oa,,—o,-,-’/bu,} dVﬁ—J (1,—T)ou;dS
vy S,

"
k=1 (’O-{/'

=1

M
—J (u,—0,)6t,dS+ Y j [t/ du; +1 6u1dl, =0 (1)
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in which the comma convention is used to indicate partial differentiation with respect to
coordinate x,. The + and — superscripts denote the two sides of an internal interface. The
variational statement of eqn (1), which incorporates the linear strain-displacement relations
and symmetry of the stress tensor, is to vanish for every admissible variation in do; and
ou;.

Admissibility of the stresses and displacements is governed by the boundary conditions
and the unique definability of the Hellinger-Reissner functional. For the functional to be
uniquely defined, the term o, must be integrable throughout the domain. While there are
other possibilities to ensure this, continuity of the displacements throughout the domain is
imposed, thereby eliminating the possibility of a delta function in the strains and guaran-
teeing integrability of the term even when the stresses are not continuous. In addition to
this requirement on the displacements, it is desired to develop a theory in which tractions
are continuous between layers. In summary, admissible variations in the displacements are
to be continuous within subvolumes and at interfaces, and vanish on S,, and admissible
stress variations are symmetric (ég;, = dg;), continuous in subvolumes, satisfy traction
continuity at interfaces, and vanish on S,,.

For the dropped-ply problem shown in Fig. 1, the more conventional notation of x,
¥, and z for the coordinates and u, v, and w for the respective displacements are used. In
addition, contracted notation is employed for the stresses and engineering strains such that
[ Opys 0oy O,y 6o, 6,17 = [04, 62, 03, 64, 05, 6] with the same order for the strains.

GENERALIZED PLANE DEFORMATION

Generalized plane deformation is a class of problems in which the stresses, geometric
and material properties, and hence strains are independent of a coordinate direction, in this
case y. This assumption differs from generalized plane strain in that it allows bending about
the x- and z-axes and twisting about the y-axis. The solution domain is reduced to the x-z
plane where the x-axis is the longitudinal axis and the z-axis is the thickness direction (see
Fig. 1).

For generalized plane deformation, the most general form of the displacement field is
(Lekhnitskii, 1981)

u(x,y,z) = —1/24y* +0vz+ U(x, z) + o/’
v(x,y,2) = (Ax+Bz+C)y+ V(x,z)+0v
w(x,y,z) = —1/2By” —0xp+ W(x,z) +w )

where 4 and B are the negative bending curvatures in the x-y and y-z planes respectively,
C is the normal strain ¢, at x = 0 and z = 0, and the product 0y is the rotation of a cross
section about the y axis. 4, B, C, and 8 are all constant over the domain and are the
prescribed out-of-plane deformation quantities. The functions U, V and W are the unknown
portions of the displacements and «’, v" and w’ are the rigid body displacements.

DEVELOPMENT OF THE STRUCTURAL MODEL

Assumptions for a generic layer

The subvolumes of the domain take the form of layers, as layers are the most appro-
priate for the treatment of laminates. These layers may have curved boundaries and need
not have uniform thickness. The stress field is approximated within a layer. Consider a
generic layer with lower and upper boundaries at z,(x) and z,(x) respectively, with z, and
z, smooth functions of x and z, > z, for all x. Following Pagano (1983), the stress field
within a typical layer takes the form
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6/(x,2) = 6,(x)fP(x,z) i=1-6,J=1—-4 (nosumoni), 3)

where o, are the six stress components in contracted notation, ¢, are functions only of x,
and /1 are shape functions with explicit dependence on z and known implicit dependence
on x through z, and z,. The requirement that ¢;, = 0,(z,) and ¢, = 6,(z,) is imposed in
order to facilitate interlayer traction continuity.

In arriving at the specific form of the shape functions, the in-plane stresses o,, o, and
6. (0,, 0,, and g4 in contracted notation) are assumed to have linear dependence on z.
Based on the y-independent form of the elasticity equations of equilibrium, the through the
thickness distribution of the remaining stress components are determined. The through-
the-thickness shear stresses ¢,. and o,. (0, and o5) are found to have quadratic dependence
on z and the thickness normal stress o. (o) has a cubic distribution. The nonzero shape
functions are

zZ,—z
=R =10 =g = 10 = 1 =
|
. Z—2Z;
S =R = = = ) = 0 = 2
Zy— 4
,
" —z(z, +z) 42,2,
R T
(z;—21)
[ = 2z° =32%(z, +2) +2(27 42,2, +23) — 2,22 (21 + 23) (4)
4 = .
(z:—2)’

The last two shape functions are referred to as bubble functions since they are zero at the
boundaries of the layer.

The forms of these bubble functions differ from those chosen by Pagano in two ways.
First, the cubic bubble function was chosen to be orthogonal to the quadratic one within a
layer, i.e. the integral of their product through the layer is zero. This was done in an attempt
to overcome conditioning problems when the governing equations were solved numerically.
Although this was not sufficient in and of itself to overcome the problem (a different choice
of weighting functions, which will be detailed later, solved that problem), it did improve
conditioning and provided the added benefit of simplifying the governing equations result-
ing from application of the variational principle. Second, they are scaled by powers of the
thickness (z,—z,) in order to nondimensionalize them and to keep their amplitudes from
becoming disproportionately small for thin layers.

The form of W* for linear-elastic materials in terms of the stresses in contracted
notation is

W*:%Si’.o’igi‘ i,j:],...,6 (5)

where S, are the compliance coefficients. This expression is substituted into eqn (1) along
with the strain field based on the displacements of eqn (2), the assumed stress field and its
variation,

do:(x,z) = do,(x)fP(x,z) (nosumoni), 6)

and Cauchy’s relation for the tractions in terms of the stresses. Integration with respect to
y is carried out through a unit depth, reducing the volume integral to an area integral in
the x-z plane and the surface integrals to line integrals. Integration with respect to z is then
carried out. Because of the dependence of z, and z, on x, Leibnitz’s theorem must be used
on terms involving derivatives in x.
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At this point, the displacement terms U, V and W are the only remaining unknowns
in the integrand that are functions of z. In order to complete the integration, the following
definitions for weighted integrals are made within each layer:

[3(x),9(x). 4(x)] = J " Py by halg(x, 2) dz

where
hl _ Zy—2Z .
(zo—2z,)"
Z—Zy
hz ==
(22_21)2
P—z(zy+z) 42,7,
A =Z (= ) +zi2; 7

(z2—2)’

with g representing a displacement component.

The weighting functions for the displacements in eqn (7) are different from Pagano’s,
which are simple powers of the thickness coordinate; i.e. 1, z, and z*. For thin layers or
layers located at moderately large values of z relative to the layer thickness, function z* is
numerically well approximated by a linear combination of 1 and z. The present change in
the weighting functions improves the linear independence of the functions, and solved the
problem with numerically ill conditioned system matrices.

Layer assembly

A schematic of an assembly of N layers is shown in Fig. 2 along with some notation.
The z-coordinate of the kth interface, the top of layer k&, is designated z,(x), and the angle
between the horizontal and the tangent to interface k, measured positive counter-clockwise,
is y,. From the geometry, z;(x) = tany,(x), where a prime denotes an ordinary derivative
with respect to x. The bottom of layer 1 and the top of layer N are part C* of the edge curve
C, and ends x = x; and x = x, (x, > x,) are part C° of C (C = C*+ C9).

Layer variables are denoted by the layer number in parentheses as a superscript. Addi-
tional subscripts 1 and 2 are used to denote dependent variables evaluated at the bottom
and top, respectively, of a layer; e.g. u®(x,z,_,(x)) = ¥ (x) and ¥® (x, z,(x)) = ¥ (x).

The form of the variational principle arrived at through substituting eqns (2), (3), (5)
and (6) into eqn (1), and using definitions given in eqns (4) and (7), is

Cef k+1

+
X, X,

Fig. 2. Schematic of layer assemblage.
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+{[(z — T ) oull + (t,1 — 1T Yol + (1., _frl)(l)éw(l”] S€C Yo

+ (T = Te2)V 0u™ + (12— f_yz)(N)év(zN) + (1., — £.,) M ows"] sec ?'N>C:,

— <y =) V8t + (v — 7)Y + (wy — W)t sec

+ [(u, — 1) M08 + (v, "‘52)('“5'5,(\-‘? + (W, —Ww;)™ ot sec VN>C:,
N—1

+ ¥ (08 —oldz)out) + (o7 Vzi— ot ot + (o — otz ov)
k=1

(O_(k+1)7 ng1+l))5v(1k+l)+(0'(3k2)—O'Eka)";\)Ow(k)—f—(O'(kJrl)” O_(k$1))5w(k+1)]}

N
+ Z {([(0'11 _611)(k)50(k)+(0-12_512)(k)5[—7(k,+(0'6l —&el)(k)éy(k)
K=1

+(062— 5@2)(k)5 y® +(05, — 35, )(k)é w4 (05, — 652)(“‘S w®
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(W= W) 9368z —2_)der s = . @®)

The integral on x from x, to x, in this equation contains compatibility equations associated
with the sixteen variations do,,, equilibrium equations associated with the seven variations
in weighted displacements, traction or displacement prescribed conditions on C*, and
interfacial conditions in which Cauchy’s formula was used for the surface tractions. The
remaining terms in eqn (8) are boundary terms evaluated on C* of C.

The compatibility equations in the variational principle (8) have the terms yu;;, which
contain displacements evaluated at the interface, and terms 7y, which are displacement-
stress relations. The nonzero g, terms are

k) _ ../ (k) k) _ ’ k)

Hiy = 2y My = —ZiUs
W = Wl =t
*) — k) ) _ 4.0k
Hay = — U Haz =12
: 3 3 s &
p = b = ) — ot
S N— () Ry _ 0
Hei = Zp 10} Hez = —ZiU3 7. 9)
The y,, are
k) (Al (A) (k) (k)
Xy =17 S kIO K (10)

in which weighted integrals of the compliances are defined by

S%, = J LS A dz (11)

k-1
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and the out-of-plane prescribed strains are contained in the terms

T = 1/6(z, —z, N B3(Ax+C)+ B2z, +2z)]

T = 1/6(z— 2, )[3(Ax+C)+ By, +22,)]

'Y = —1/2(z, —z_)0x

T = —1/2(z,— 7, )0x

T = 1/6(z —z,_,)0x

TR = 1/6(zs —24-1) 2z +2:)0

T — 1/6(zi—2z )z 1 +220)6. (12)

Finally, the nonzero strain measures in terms of weighted displacement are

i = @~z DO + (2, =22, ) 0% -z 0w
N = (zx—z_ 1)(7(“/""3/:-71 U% +(2z; _3/((71)Uv(k)
’7(3k1) = Wk L ’7(!(2) = — W _

n(}k}) — W(k)_ W(k) '213}\2 - _ W(k)__ W(k)_6W(k)
’75’? = ph L pw Vlﬁzkzl — P _ P

’7%‘3) — I7(k) . I}‘v(k)

e = (Zk_zk—I)W(k),+(2;<—2z;\-—l)Wlk) —Zi wh L g®+g®

K _ (~ - Iy 4 o 77k ’ ot 77tk Tk (k)

11(52)-— ‘Lk_k'k*])W() +gk4|W()+(2Zk'—.’_A,_1)W( —U()_U(

K — (~ o 24 L 77k 7 ATk o k) Tk 7 (k)
N9 = (2o —z VWW 2 Wz WP 43 (2 — 2, YW+ O — O

(
(
nd = (=2 WV + (2 =2z, )VP =z 7®
(Ge—ze- WV + 2 PR+ Qzf—zi V™. (13)

We impose interfacial continuity conditions on the set of admissible displacements and
stresses and their variations. Interlayer continuity of displacements is stated as

u(zk) - u(]k+1)
P = et
W = i h (14)

with the same conditions on their variations. Substituting these relationships into the
principle combines the six interfacial terms into three traction continuity conditions at each
of the internal interfaces :

(6% —zi0¥)) = (o¥7 V= ziatT )
(68 —ziad) = (¥t —zio®ty k=1,... . N—1

(60 —ziold) = (6% —ziot V). (15
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It is assumed that the variations of the stresses satisfy traction continuity at the
interfaces. Substitution of the variations of eqn (15) into the principle combines some of
the compatibility terms, reducing their number by 3(N—1). Applying the continuity of
displacements cancels the yu;, terms for the internal interfaces, eliminating the interfacial
displacements from the formulation. The resulting interfacial compatibility equations are

&+ =0: i=1,3,4,5,6l
A+ Y =0 | k=1-N-1. (16)
163 + 2 = 0. 1

Prescribed boundary conditions on the upper and lower surfaces, boundary C*in Fig.
2, become part of the field equations for the first and Nth layers in the reduction to a two-
point boundary value problem. The details are given by Harrison (1994), and the resulting
equations are summarized later with the rest of the governing equations.

The equilibrium equations are simply G* = 0 where

G = (ze =z Do +zio, (o —at))— O'(k)‘*‘o'(skz)_a(skz)

G = (=5 )oY + 20 —0f) — o + 0 + o

GY = (z— 2ol — ol + ol — o+, (ol — o)

GY = (Zk“zkf|)0'(6k“)’_0'(4”+0'(k)+0' +Ak(0'(k)“0'(6kz))

G(skJ (ék“—l\—l)am/ (k)‘}‘o'(k) O'(zkz)+0' +hl\7|(°'(k)-0(5k)+0'(5k3))
GP = (z;—z, o) =6 + 06l +0{) + 0] + 2z, (6] — ') — )

G = (22, )0 +60% —2(z, 2, )0, (17)

The remaining equations are layer compatibility equations which are defined for all N
layers:

H=9%= X(4k3) = X(sks) =0. (18)

Resolving the order of the system

The group of equations resulting from this derivation is called a system of differential-
algebraic equations (DAEs) because it is composed of both differential and algebraic
equations. Solution of such systems can introduce problems in the interpretation of the
order of the system, which is not straight-forward.

As presented in eqn (8), the principle contains 29 variables per layer (sixteen stress
quantities, seven weighted displacements and three displacements at the bottom and top of
the layer) giving a total of 29N for a model. There are also 29N terms in the integral,
composed of a varied quantity and its associated equation. Of these equations, 14N are
differential, composed of all 7N of the equilibrium and 7N of the compatibility terms. There
are also 7N boundary terms at each end. For our case in which the internal layer interfaces
are perfectly joined, the number of variables is reduced by 6(N — 1) with the elimination of
internal interfacial displacements (three for each of the two adjacent layer surfaces com-
prising the interface, of which there are N—1). At the same time, the number of terms in
the principle is reduced by 6(N—1); 3(~¥N—1) from combining the interlayer traction terms
associated with the variations of the internal interfacial displacements, and 3(N—1) from
combining layer compatibility terms associated with the variations in the stress components
evaluated at the interface. In this procedure, the number of differential compatibility
equations is reduced by N— 1 through the combining of layer compatibility terms associated
with do, and dgs,. Prescription of the x-direction traction on a surface also reduces the
number of differential equations by one.
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Thus, after invoking interfacial continuity and surface conditions the system has 23N
equations and unknowns with 7N differential equations of equilibrium, either 6N —1, 6N,
or 6N+ 1 differential equations of compatibility (depending on the surface conditions), and
the remaining equations algebraic. In this form, difficulties arise in solving the system
having to do with the number of differential equations and boundary conditions. Because
the number of differential compatibility equations are reduced without a like reduction in
the number of differential equilibrium equations, it is possible to have a system with an odd
number of differential equations. Application of the same boundary conditions at each end,
giving an even number of boundary conditions, appears to be in conflict with this. This
inconsistency was remedied by Pagano (1983) through an involved interpretation of what
he calls end conditions. He arrived at these end conditions by assuming the integrand of
the functional vanishes at the ends. These conditions were then incorporated into his central
difference approximation using three-point forward and backward differences at the ends.

As an alternative to Pagano’s interpretation, we use a manipulation of the differential
equilibrium equations to reduce their number by the same amount as the differential
compatibility. This was done by differentiating the first equation of eqn (15), eliminating
6, 6¥)" and 6{})’ by substituting from G¥,G¥* P, and G{¥*, and then substituting this
resultinto G{. (It is worth noting that the traction continuity equation that is differentiated
here to eliminate ¢%’ is the same one that combined two of the differential compatibility
terms when its variation was substituted into the principle.) The new form of the equation
is labeled G and is given by

G = — () ol + (@ — 2 )Zi+ (20100 — 68 + 0 + 08 + o]
S () k) *) (zx—2x 1) /N2 1)
+2zi(as) — 05 —0$)) + {[(Zk) —(Zk-1 —z)zi]ot,
(Zhr1 —20)

2 (k+1 k+1 k+1 k+1 k+1) 4 k+1 (k+1 A+ 1)
— ()%l Vol — o oS — ol V4 2z (— o 0V — a5t (19)

This equation is defined fork =1—- N—-1.

The x-direction surface conditions require a similar treatment in order to avoid an odd
number of differential equations. The details of the derivation of G®,G¢", and G{" are
presented in the dissertation (Harrison, 1994).

Effective compliances for sublaminates

Direct evaluation of the effective compliances given by eqn (11) for mathematical
layers comprising multiple plies of varying orientation, or sublaminates, results in an
excessively flexible response. Effective compliances that are too large are caused by the
assumption of continuous in-plane stresses across the interface of adjacent lamina which,
in turn, implies the in-plane strains jump across the interface because of the step change in
material properties. Thus, direct application of eqn (11) for sublaminates implies that
displacement continuity along the interface between lamina is violated.

To remedy the situation described above, eqn (11) was evaluated for sublaminates by
first using a homogenization procedure to determine spatially uniform, three-dimensional
effective compliances within the sublaminate. Thus, the compliances in the integrand of
eqn (11) are independent of coordinate z for the homogeneous equivalent sublaminate and
are factored out. The homogenization scheme employs a combination of the Voigt and
Reuss approximations in equating the strain energy of the sublaminate per unit reference
surface area to the strain energy per unit reference surface area of a homogeneous equivalent
material (Harrison, 1994). The Voigt approximation assumes equivalent strains for differing
materials making up a composite and was applied to the in-plane strains. The Reuss
approximation assumes equivalent stresses and was applied to the out-of-plane stresses.

GOVERNING EQUATIONS

The governing equations are summarized below with the differential equations under-
scored and the algebraic equations not underscored.
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Compatibility equations

X,(k)+x(k+”_0 i=1,3)4a§’§

A+ 2k 8+ (207 x88 = k=1->N-1

k 7 apk
xe2+zixs? =0

A+ 2oxs + o) xs) =0

(1 1 __
X61)+26X5n) =

0 2082+ (23)° %87 =

(N)

X6y +zvxdy = 0.

Equilibrium equations
GP =GP =GP =6y = GP=0 k=1-N

G¥ =0
G = 0} k=1->N-1
with either, for «!"’ prescribed,
GY' =0
or, for 1\ prescribed,
Gy =0

as well as either, for 48" prescribed,

or, for 43" prescribed,

Interlayer traction continuity equations
(08 —ziatd) = (a¥" ! —ziot" D)
(08— zo®) = (@ — ol ) | k=1 N—1
(@ —zi0$d) = (64" " —ziali V).

Surface conditions
For layer 1,

(1) 1) 5 ( 1) o1 1) ~(1)
%5t + X(3 —a" =0 or giysiny,—olcosy, =t}

i = =0 or oi)siny,—ai}cosy, =T}

20

21

(22)

(23)

(24)

(25)

(26)

@27

(28)

29

(30)

(1)



A mixed variational formulation for interlaminar stresses 2387

A=W’ =0 or af/siny,—ofcosy, =t (32)
and for layer N,
AP+ 2wy +a8" =0 or 6l cosyy—at sinyy = 1 (33)
A+ =0 or oY cosyy—ady sinyy =Y (34)
A+ =0 or oY cosyy—oW sinyy =W, (3%5)

Boundary conditions

The boundary conditions are affected by the imposition of traction continuity as well
as by the surface conditions. In eqn (8), there are 14N boundary terms at the x = constant
edges (C°) of which 7N apply depending upon whether displacements or tractions are
prescribed. Assuming eqn (15) holds at the end points, substitution of the variational form
of the first part of eqn (15) reduces the number of displacement prescription equations by
N—1. Applying the unvaried form of the same equation reduces the number of inde-
pendently specifiable stress variables in the traction prescription terms by N —1. In a similar
manner, for each x-direction surface (C*) traction prescribed, the number of boundary
conditions is reduced by one.

A further point needs to be made regarding the development of the boundary
conditions. In order to allow the three tractions to be applied independently, restrictions
must be placed on the geometry of the domain at the ends. Specifically, the slope of all
layer interfaces is restricted to zero at the ends. The resulting boundary conditions are

0% = W and J® = 7%

P® — PO and PO — p®
or k=1-N 37

k ~(k ~(k
of) = ¢} and ) = ¢

(Ze—ze WP+ (2 —z ) WD

= (Zk_zkil)ﬁv/(k)'{'(zkﬁ»l _Zk)ﬁ_/(kﬂ) k=1-N-1

and (38)

W = k=1-5N

or

ot =g¢*Y) k=1->N—-1
and
o) = g8 k=1->N

With, for 4" prescribed,
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W= W or off) =4y (39)
and for u%"’ prescribed,

WM = W™ or ¢ =¥, (40)

Wi

Segment continuity

In order to analyze a dropped-ply laminate, the formulation must also allow step
changes in material properties in the longitudinal direction. To accomplish this, the domain
is divided into segments, each having its own properties. The solutions for the different
segments are then joined through inter-segment continuity conditions. In deriving these
conditions, restrictions on the geometry of the adjoining segments must be imposed.
Specifically, the layer boundaries must be continuous and the slope of the layer boundaries
must also be continuous. The first restriction is required to preserve consistency of definition
of the weighted displacements between segments and to allow pointwise traction continuity.
The second restriction is imposed because, without it, ¢, 6; and g5 would all have to be
equal across both the layer and segment interfaces at the junction. The resulting conditions
between segments designated @ and b are

k k
ol = oy 1
k k
0630 = 043
k k
08, = ofl
i k
G(ll)a = 0'(11));
k) _ k)
G120 = Ol
. _ > k=1->N (41)
k (
V,(,) = Vg)
I‘/’(k) - ng)
a
7k 7k
W = e
U0 +z, WP =U0P +z, WP
— o= - -
UO 4z, Wk = P 4z, WP
k+1) e+
ok, ' = O‘%J; )
- I7k+1 itk —
G — 2 WE V(g =z, WP k=1-N-1 (42)

Irk+1 - Yk
= (Zgs1—2x) Wl(; * )+(Zk _/-k—l)W;v )
with, for " prescribed,

1 1 ol Tl
oyl, =0l and W) =W}’ (43)

and for u$") prescribed,

o, =0, and W =W (44)

Model summary

Determining the response for a particular problem involves the determination of 23N
unknowns (16N stress variables and 7N weighted displacements) where N is the number of
layers. They are determined through the solution of eqns (20) through (35) subject to the
boundary conditions of eqns (36) through (40) with the conditions of eqns (41) through
(44) between segments of the domain.
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NUMERICAL SOLUTION OF THE BOUNDARY VALUE PROBLEM

Due to the curved geometry at the ply drop-off, the first order system has variable
coefficients. Written in matrix form, the system is expressed as

A@X)Y () +B(x)y(x) = f(x) (45)

where A(x) is singular due to the algebraic character of some of the equations. This
mathematical formulation is classified as a semi-implicit boundary-value DAE system and
is a subject of contemporary research (Schiesser, 1994). The solution vector y for an N-
layer problem has the form

yo= [y "y v (46)

where each y* contains 23 unknowns composed of the 16 stress variables and 7 weighted
displacements.

The resulting system is solved using a one-step finite difference approximation. One-
step differences were chosen over two-step methods, such as the central, forward, and
backward differences used by Pagano er al. (1985, 1986), because of their flexibility in
handling non-uniform grid spacing as well as their straightforward application at the
boundaries for first order systems.

The trapezoidal finite difference scheme was attempted first. However, its accuracy
(order 2) was not sufficient, resulting in erroneous results in regions of thickness taper.
These errors were further magnified if rigid body displacements were present. The two-
stage Gauss implicit Runge-Kutta scheme (order 4) provided the accuracy needed to
overcome these errors and is the scheme used for the results given in this paper (see Ascher
et al. 1988). However, the derivation of this scheme presented in the above reference
applies only to fully differential systems. The present system was therefore converted by
differentiating the algebraic equations and applying them in their original form as initial
conditions. Because the higher order Runge-Kutta scheme involves matrix inversion in
arriving at the difference equations for each step, this fully differential system increased the
computational expense to achieve improved accuracy over the trapezoidal scheme.

ACCURACY OF THE MODEL

Comparisons of the results obtained with the present model and solution strategy with
those published by Pagano (1978) for the benchmark problem of the interlaminar stress
response near the straight free edge of a tensile coupon were published earlier (Harrison
and Johnson, 1993). These results showed very good agreement, which was expected
because the stress assumptions of the present model essentially reduce to Pagano’s for
uniform thickness flat layers. In addition, we presented a comparison with the displacement
based finite element results of Curry ef al. (1992) for the interlaminar stress response of a
dropped-ply laminate subjected to axial compression. The interlaminar stresses were com-
pared along contours passing through the finite element Gauss points, as that is the location
of the most accurate values from the finite element analysis. Good agreement was found
between the two analyses.

PARAMETRIC STUDIES

The results presented here are for parametric studies of dropped-ply laminates in which
the influence of the load path eccentricity and the magnitude of the stiffness discontinuity
are examined.

Eccentricity study

When a laminated plate contains an asymmetric ply drop-off, the middle surface is not
a plane but instead contains an offset at the drop-off. This eccentricity in the middle surface
and the bending moment that is induced would appear to be a factor in the strength
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[£45/0/90]
4 dropped plies l \ ’ gs
[+45/0/90] X
(a) With eccentricity.
b4
[+45/0/90]
4 dropped plies | e —
[+45/0/90}
X
(b) Without eccentricity.

Fig. 3. Laminates with and without eccentricity in the middle surface.

degradation in a dropped-ply laminate. This parametric study was done to determine the
effect of eccentricity on the interlaminar stresses present at a ply drop-off.

Two dropped-ply configurations are compared, one that is asymmetric and therefore
has an eccentric middle surface, and the other that is symmetric, i.e. no eccentricity (see
Fig. 3). These two geometries were examined with three different layups for the dropped
plies and under three different loadings for a total of eighteen cases.

In both geometries, the two continuous sublaminates have the same eight ply quasi-
isotropic [+ 45/0/90], layup. The dropped sublaminate contains four plies with the layups
10.)7, [904]7, or [+45],. Each ply has thickness 0.1395 mm (0.0055 in) giving thicknesses
0.558 mm (0.022 in) for the dropped plies, 2.794 mm (0.110 in) for the thick portion, and
2.248 mm (0.0885 in) for the thin. The thin portion also contains a 0.0127 mm (0.0005 in)
thick layer of resin between the continuous sublaminates which is a continuation of the
layers modeling the resin region and the dropped plies, and is required in order to retain a
constant number of layers in the mathematical model throughout the domain. The eccen-
tricity is, therefore, either zero or 0.273 mm (two ply thicknesses minus half the resin layer
thickness). The lengths of the thick and thin portions is 25.4 mm (1.0 in) for each and the
tapered section is 2.24 mm (0.088 in) long for a total laminate length of 53.04 mm (2.088
in). The origin of the coordinate system for the study is located at the end of the dropped
plies, i.e. the beginning of the thickness taper (see Fig. 3).

The model used in this analysis consists of six mathematical layers. That is, in moving
from one surface to the other of the thick section, the layers are [+45/0/90,/0], [F45],
[+£6], [¥6], [+45], and [0/90,/0/ F45]. With the exception of the 90° cases, the center two
layers are modeled as resin from the drop-off, through the transition region, and into the
thin section. Experience in manufacturing specimens with 90° dropped plies has shown that
these fibers tend to migrate into the area occupied by resin in the [0,]; and [ +45], dropped-
ply laminates. For the 90° cases, the triangular shaped resin region is modeled as 90°
material with the origin remaining at the thick end of the taper.

The material properties for the individual plies are those of AS4/3502 graphite/epoxy:

E, | =128GPa (18.5Msi), E,, = E;; =11.3GPa (1.64 Msi)
Gy, = G,; =60GPa (0.87Msi), G,, =3.38GPa (0.49 Msi)
Viz = 03, Va3 = 0.35

=
fl
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and for the neat resin:

E=345GPa (0.5Msi)
v=041.

The three load cases are longitudinal compression (along the x-axis), transverse tension
(along the y-axis), and shear in the x-y plane. The surfaces of the laminates (C* in Fig. 2)
are considered to be traction-free in all three load cases. The boundary conditions at the
left (thick) end (x = —25.4 mm) are also the same in all three load cases, withu = 0,v = 0,
and 7, = 0. Each laminate is constrained from rigid body translation in the z-direction
through the prescription of w = 0 at the lower surface of a very short (0.254 mm) segment
at the left end. The other rigid body modes are excluded through the displacement boundary
conditions. The longitudinal compression and in-plane shear loads are applied through
prescription of N, and N,, at the right end (x = 27.64 mm), while restraining the » and v
displacements, respectively, to uniform values through the thickness. The transverse tension
load is applied through prescription of the uniform strain ¢, by taking 4 = B = 6 = 0 and
C = 0.001 in eqn (2).

Since the primary focus of this study is the effect of eccentricity on the tendency of
laminates with dropped plies to delaminate, a measure of this tendency is necessary. Rather
than looking at each interlaminar stress component separately, it is desirable to have an
index that accounts for the combined effect of the different components. An index similar
to the Quadratic Delamination Criterion proposed by Brewer and Lagace (1988) was
chosen. This delamination index is defined as

T : Uyn : Gy :
P (o) (3) - (3) “

in which o,, denotes the interlaminar normal stress, and ¢,, and o,, denote interlaminar
shear stress components, and where Z5', Z5?, and Z7 are the allowable interlaminar stresses.
For AS4/3502, those allowable are assumed to be

Z5' = 752 = 93.08 MPa (13.5ksi)
ZT = 51.99 MPa (7.54 ksi).

The onset of delamination is likely to occur when F > 1. Since index F depends quadratically
on the stresses, it is the square root of F which would be directly proportional to the load
in the case of proportional loading. Therefore, the distribution of ./ F, referred to as the
delamination fraction, will be examined. It should be noted that using eqn (47) with F =1
as a delamination initiation criterion is not meaningful, since the peel stress, or tensile
interlaminar normal stress, at the ply termination is likely to be singular in an elasticity
solution. This singularity is manifested in our approximate solution by non-convergence of
the maximum peel stress as the number of mathematical layers in the model increases.
However, eqn (47) with F = 1is used as the basis of a failure criterion if stresses are averaged
over the interface or if they are evaluated at some distance from the ply termination.

The delamination fraction was examined along the two critical interfaces, 1.e. the top
of the lower continuous sublaminate and the bottom of the upper continuous sublaminate.
These two interfaces will be referred to as the lower and upper interfaces respectively. For
the centric geometry, the distribution of V/I—V is the same for the two interfaces due to
symmetry.

Results for the four 0° dropped-ply layup and a longitudinal compression load of
N, = —1kN/m are presented here, with summaries for the other cases presented later. The
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Fig. 4. Delamination fraction along the lower interface for four 0° plies dropped and the laminate
loaded in longitudinal compression (N, = —1 kN/m).

delamination fraction for the lower and upper interfaces is plotted vs the normalized
longitudinal coordinate x/¢,, where t, denotes the thickness of the dropped plies, in Figs 4
and 5 respectively. As shown in these figures the eccentricity has essentially no effect on the
peak value of ./ F along either interface for this case. There is a significant difference in the
interlaminar stresses in the tapered region (0 < x/t, < 4), however these stresses are well
below the peak values at the end of the dropped plies and are therefore not considered
critical.

Itis informative to examine the interlaminar stress components separately to determine
their relative contributions to the delamination fraction. The distribution of 5, and ¢, (7,
is approximately zero) along the upper interface are shown in Figs 6 and 7. (A value of
N, = —1 kN/m represents an average compressive g, stress in the thin section of the
laminate of 445 kPa.) The maximum value of the delamination fraction coincides with the
maximum values of both the interlaminar normal and shear stresses, which also are not
significantly influenced by eccentricity. This indicates that for this layup and loading, the

25102
w/0 eccentricity
2.0 1024 .
— — - w/ eccentricity
151073
S 101031
- \
_
\
-
5.0 10744 \
\
-
0.0 109 - — _
-4
'50 10 T . T T T T T T ™
-10 -8 6 -4 -2 0 2 4 6 8 10
Xt

Fig. 5. Delamination fraction along the upper interface for four 0¢ plies dropped and the laminate
loaded in longitudinal compression (N, = —1 kN/m).
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Fig. 6. 4, along the upper interface for four 0° plies dropped and the laminate loaded in longitudinal
compression (N, = —1 kN/m).

stiffness discontinuity influences the interlaminar stresses much more than the eccentricity.
As for the relative contribution of the two stress components, the peak interlaminar normal
tensile value of 97 kPa is 0.18% of Z” while the peak interlaminar shear is —150 kPa, or
0.16% of Z*'. This suggests that these components will have a comparable influence on the
delamination of these laminates.

From the left end up to about x = 2¢,, the delamination fraction along the upper
interface is very similar for the eccentric and centric geometries. Each has a maximum at
x = 0 with a second peak at about x = ¢, (the plots of the interlaminar stresses show that
this second peak is caused by a second peak in the tensile interlaminar normal stress). The
delamination fraction is affected by the addition of eccentricity in the region 2¢, < x < 41,
where an additional peak arises. As shown in Figs 6 and 7, this second peak is due to an
increase in the interlaminar shear stress in that region. This shear peak is in turn due to a
reversal in the bending moment through the transition region caused by the eccentricity,
which introduces the additional negative shear. While this second peak in the delamination
fraction is an interesting consequence of the presence of eccentricity, its magnitude is still

50
0 ——
e
= 501
Q.
4
g
© 100
-150+ w/0 eccentricity
— — - w/ eccentricity
-200 T =T T T B R T T T
-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 7. g,, along the upper interface for four 0° plies dropped and the laminate loaded in longitudinal
compression (N, = —1 kN/m).



2394 P. N. Harrison and E. R. Johnson

slightly less than the peak in the transition region that occurs without eccentricity and much
less than the maximum that is located at the end of the dropped plies.

For the longitudinal compression loading, the [90,], dropped-ply layup experiences
the largest change in the delamination fraction due to eccentricity, a 15% increase from
1.22x 107" to 1.4 x 107*. However, experimental results presented by Curry et al. (1992)
indicate that this configuration does not tend to fail by delamination under longitudinal
compression. The fact that this layup has the smallest change in longitudinal stiffness and
also the smallest values of ﬁ again indicates the larger role that the stiffness discontinuity
plays in the delamination of dropped-ply laminates. The [ +45], dropped-ply layup loaded

in longitudinal compression only experiences an increase of 3% in V/}? due to eccentricity.

The values of /F for the transverse tension loading are all well below the values for
the [90,]; layup loaded in longitudinal compression, which again are below that required
for a delamination failure at this level of load. Therefore, none of these three layups
subjected to transverse tension would be expected to delaminate. The largest increase in
V/,F due to eccentricity for this loading is 11% for the [90,]; layup.

The shear loaded case also has its largest increase in / F due to eccentricity occurring
for the [90,]; drop. This is also the layup with the smallest value for the delamination
fraction, again too small to induce a delamination failure. The [445], dropped-ply layup,
the stiffest with respect to shear, has the largest values of \/F for any of the cases examined,
peaking at 3.65 x 107? for the eccentric geometry. However, this represents an increase of
only 3% over the centric case.

Therefore, it appears that eccentricity does not significantly affect these laminates’
capability to resist delamination initiation when loaded by longitudinal compression, trans-
verse tension, or in-plane shear. This does not imply that these laminates will not delaminate,
only that the presence of eccentricity of the middle surface does not appear to make this
mode of failure significantly more likely than for laminates without eccentricity.

Stiffness discontinuity study

Clearly, the results of the study examining the effect of the eccentricity of the ply drop-
off indicate that the stiffness discontinuity has a much greater influence on the magnitude
of the interlaminar stresses than the eccentricity. Therefore, we examine the relationship
between the stiffness of the dropped plies and the resulting interlaminar stresses.

The geometry of the laminate examined is the same as the eccentric dropped-ply
laminate of the eccentricity study which is shown in Fig. 3(a). Four plies are dropped from
between two eight ply quasi-isotropic [ +45/0/90], sublaminates with the bottom surface of
the laminate flat. The stiffness of the four dropped plies is varied by altering the angle 6 in
the balanced angle-ply layup [+ 6],. Five orientations for the angle 8 are examined : 07, 30°,
45", 60°, and 90°. These layups are subjected to longitudinal compression and in-plane
shear loadings for a total of ten different cases. The transverse tension loading examined in
the eccentricity study is not repeated here because of the relatively low interlaminar stresses
found for that loading.

The material properties used are again those of AS4/3502 graphite/epoxy. The dimen-
sions of the laminate and the discretization used in modeling it are the same as those of the
eccentricity study. The modeling of the 8 = 90" case, however, does represent a change
worth noting. In the eccentricity study, the 90" fibers were assumed to migrate into the
region occupied by resin for the other orientations. The present study, being more interested
in determining the effect of the magnitude of the stiffness discontinuity, uses the same
location of the material discontinuity (x = 0) for 6 = 90" as for the other layups and retains
the triangular shaped resin region.

The distributions of the delamination fraction for the five different dropped-ply layups
along the lower and upper interfaces for the longitudinal compression load case (N, = —1
kN/m) are shown in Figs 8 and 9. Clearly, the peak value of the delamination fraction
increases with increasing longitudinal stiffness of the dropped plies, as expected. In addition,
the decay length into the thick section required for the induced interlaminar stresses to
vanish also increases. The interlaminar stresses within the tapered region (0 < x/t, < 4) do
not vary significantly with the stiffness of the dropped plies.
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Fig. 8. Delamination fraction along the lower interface for different values of 6 of the dropped
sublaminate [+ 6], (¥, = —1 kN/m).

Similar results are obtained for the in-plane shear ioaded case shown in Figs 10 and
['1 with the in-plane shear stiffness of the dropped plies as the major factor influencing the
magnitude of \/F. That is, the § = 45° case has the largest peak in \/?" as well as the
greatest in-plane shear stiffness. As the value of § increases or decreases from 45°, the in-
plane shear stiffness of the dropped plies decreases as does the peak \/F. An interesting
difference between the response under in-plane shear and longitudinal compression loadings
is that the decay length of the interlaminar stresses is shorter for the shear loading.

In work of Curry et al. (1992), a good experimental correlation was found between
the ratio of the longitudinal stiffness of the thick to the thin sections of a dropped-ply
laminate and the ratio of the compressive strength of the thin section to the compressive
strength of the dropped-ply laminate (tested independently). Despite the fact that this
correlation neglects the change in failure mode from that of the thin section (compressive
strength failure) to that of the dropped-ply laminate (delamination), the agreement was very
good. A similar approach is now taken in looking for correlation between the magnitude of
the stiffness change and the interlaminar stresses introduced.
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Fig. 9. Delamination fraction along the upper interface for different values of # of the dropped
sublaminate [+ 6], (N, = —1 kN/m).
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Fig. 10. Delamination fraction along the lower interface for different values of 8 of the dropped
sublaminate [+ 6], (N,, = | kN/m).

In Curry’s examination of the effect of stiffness change, strain gage measurements were
used to determine the average stiffness of the thick and thin sections of the laminate and a
ratio of the two values was computed. The present study, being purely analytical, will rely
on an estimation of this ratio based on classical lamination theory (CLT). Since the loading
in the present study consists of an applied N, with ¢, constrained to zero through the
prescription of the out of plane deformations, the stiffness coefficient from CLT of interest
is 4. That is, this loading can be thought of as an applied strain field of &, # 0 withe, = 0.
Because both symmetric angle-ply and quasi-isotropic laminates have zero shear-extension
coupling terms A4, and 4,4, no 73, is induced and the applied N, is related to &) through
the relation N, = 4,,¢%in CLT.

Rather than correlating the stiffness change to a measured failure load as did Curry et
al., the present study will use the peak value of the delamination fraction. The values of the
longitudinal stiffness ratio for the five dropped-ply laminates examined are plotted vs the
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Fig. 11. Delamination fraction along the upper interface for different values of 8 of the dropped
sublaminate [+ 6], (N,, = | kKN/m).
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Fig. 12. Plot of the correlation between the stiffness ratio and the peak value of \/77 (longitudinal
compression loading).

peak ﬁ values in Fig. 12 along with a linear least squares fit. Although not compared to
a baseline case of a uniform thickness specimen (as did Curry ef al.) since this would
correspond to a zero value of \/ F, these results indicate that if failure is based on the
magnitude of the peak value of \/F, an increase in the longitudinal stiffness ratio will result
in a proportional decrease in failure load of the dropped-ply laminate.

A similar examination of the in-plane shear loaded cases can be made by using the 444
stiffness coefficient instead of 4,,. This choice is easily justified by the aforementioned
decoupling of the shear and extension for balanced, symmetric angle-ply and quasi-isotropic
laminates. A plot of a linear least squares fit of the ratios in 44, vs the peak values of V/;“
is shown in Fig. 13. While the correlation here is not as good as for the longitudinal
compression case, the trend is clearly represented. This is a somewhat curious result because,
unlike the longitudinal compression case, which has significant contribution from both a,,
and ¢,, the value of \/77 for the in-plane shear loading is entirely due to one stress
component, the out-of-plane interlaminar shear stress o,,. The most obvious deficiency here
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Fig. 13. Plot of the correlation between the stiffness ratio and the peak value of \/ F (in-plane shear
loading).
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lies in the fact that 4, is symmetric with respect to 6 about 45 for these layups while the
peak values of \/F are not. The cause of this lack of symmetry lies in the difference in
transverse shear stiffnesses G, and G, for a unidirectional ply, which do not enter into
CLT. Because of the generalized plane deformation assumption of the present theory, the
shear strain produced by the applied shear loading is due entirely to év/dx, as 6u/dy is zero.
As a consequence, the load is transferred to the dropped plies only through ¢,, as mentioned
above. Therefore, a ply oriented such that it has a greater shear stiffness in the y-z plane
will have larger interlaminar stresses for this shear loading. This would correspond to a
closer to 907 rather than 0° and indeed these are the layups with the larger value of / 'Fin
Fig. 13.

This difference in transverse shear stiffnesses G, and G,; also affects the load transfer
for the longitudinal compression loading, however, in that case both o,, and ¢, are major
contributors to the peak value of the delamination fraction. Thus, the influence of the
transverse shear stiffnesses G,; and G, on the delamination fraction in longitudinal com-
pression is not as important as it is in the shear loading case.

A few other points regarding these correlations are worth noting. First, the fact that
neither linear least squares fits pass through \/F 0 for a stiffness ratio of 1.0 indicates
that other influences are contributing to the value of /F. These other influences are the
geometry of the taper and the presence of the material dlscontlnulty, neither of which need
be accompanied by a stiffness change. For example, a laminate with the same taper geometry
could be made with the dropped plies replaced by resin, leaving a laminate with a ratio of
CLT stiffnesses of approximately one. A material discontinuity also need not be
accompanied by a stiffness change as defined here. Wisnom’s (1991, 1992) work examining
laminates with cut, but not discontinued. internal plies is an example of such a configuration.
Wisnom found this to be the greatest single factor contributing to delamination of unidi-
rectional laminates containing dropped plies loaded longitudinally.

CONCLUDING REMARKS

A mixed variational formulation for the generalized plane deformation response of
laminated plates that taper abruptly in thickness is developed, with particular emphasis on
interlaminar stress prediction. Both interlaminar displacement and traction continuity are
imposed on the model developed, and are satisfied point-wise in the interface. The for-
mulation is a modification of Pagano’s (1978, 1983) theory in which the stress field is
assumed explicitly in the thickness coordinate and the Hellinger-Reissner variational prin-
ciple is employed. Modifications include the development of the shape functions used in
the assumed stress field as well as the displacement weighting functions used in integrating
the principle through the thickness. The changes to the weighting functions corrected
numerical difficulties encountered when attempting to directly apply Pagano’s approach to
laminates with thin layers relative to other layers or with thin layers a large distance from
the reference plane.

The approach for the solution of the governing equations was also changed. Manipu-
lation of the governing equations, which form a differential-algebraic system, to give an
equal number of differential equations and boundary conditions clarifies the selection of
end conditions. The algebraic equations were then differentiated and imposed in their
original form as initial conditions in order to allow for conventional two point boundary
value problem solution methods. The resulting set of equations was solved by a higher
order (two stage Gauss implicit Runge-Kutta) one step finite difference scheme. Pagano et
al. (1985, 1986) used central, forward, and backward finite differences to solve a system of
equations which were developed assuming the integrand in the functional vanished at the
end points.

These changes combined to allow the straightforward application to the analysis of
dropped-ply laminates which included modeled resin layers less than 5% the thickness of a
single ply.

Parametric studies of laminates of varying dropped-ply sublaminate layups under
different loading conditions showed that the stiffness of the dropped plies has a much larger
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influence on the interlaminar stresses produced than does the eccentricity of the load path
through the thickness discontinuity. In addition, a good correlation was found between the
ratio of stiffnesses between the thick and the thin sections and the peak value of the
delamination fraction, \/Fﬁ.
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